The Use of Innovative Technologies in Education:

analysis of effectiveness and implementation at different levels of education


  • Inna Koreneva Oleksandr Dovzhenko Hlukhiv National Pedagogical University
  • Nataliia Myroshnychenko Donetsk State University of Internal Affairs
  • Liubov Mykhailenko Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
  • Olha Matiash Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
  • Hanna Kuzmenko Interregional Academy of Personal Management



higher education innovative technologies, education for sustainable development, intending biology teachers training, education level


Integrating innovative technologies into the educational process can significantly enhance students' understanding and engagement with the subject matter. The article deals with the issue of innovative educational technologies implementation into biology teaching at different levels of education. The paper aims to research the most used and effective innovative technologies for biology teaching in Ukrainian education establishments. To achieve the aim of the research, a set of methods was used: theoretical: analysis of psychological, pedagogical, and methodical sources; empirical: questionnaires, interviews; graphics. The research results have found that students get an opportunity to solve a number of academic problems in the course of modern educational technologies using. It has been revealed that the most effective innovative technologies for biology teaching in Ukrainian education institutions are simulation software, virtual reality and augmented reality, online laboratories, gamification, online collaborative platforms, mobile apps, personalized learning platforms, data analysis tools, and biotechnology kits. The results show that mostly young teachers (1-10 years of work experience) implement modern education technologies. The research made it possible to determine the most effective mobile applications for learning biology that are designed to provide students with interactive and engaging ways to learn biology concepts on their smartphones and tablets. The results point to the online collaborative platforms that are most used in the educational process: Google Workspace for Education (secondary education) and Moodle (higher education).


Ageitos, N., Puig, B., & Colucci-Gray, L. (2019). Examining reasoning practices and epistemic actions to explore students’ understanding of genetics and evolution. Science & Education, 28(9), pp 1209-1233. Available at:

Akçayır, M., Akçayır, G., Pektaş, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, pp 334-342. Available at:

Alpert, W., Couch, K., & Harmon, O. (2016). A randomized assessment of online learning. American Economic Review. 106 (5), pp 378-382. Available at:

Anđić, B., Ulbrich, E., Dana-Picard, T. et al. (2023). A Phenomenography Study of STEM Teachers’ Conceptions of Using Three-Dimensional Modeling and Printing (3DMP) in Teaching. J Sci Educ Technol 32, pp 45-60. Available at:

Bakhov, I., Opolska, N., Bogus, M., Anishchenko, V., & Biryukova, Y. (2021). Emergency distance education in the conditions of COVID-19 pandemic: Experience of ukrainian universities. Education Sciences, 11(7) doi:10.3390/educsci11070364

Banda, H.J., & Nzabahimana, J. (2023). The Impact of Physics Education Technology (PhET) Interactive Simulation-Based Learning on Motivation and Academic Achievement Among Malawian Physics Students. J Sci Educ Technol 32, pp 127-141. Available at:

Bılyk, V., Yashchuk, S., Marchak, T., Tkachenko, S., & Goncharova, V. (2021). Organization of the Educational Process on Natural Science Training in Higher Education Institutions on the Basis of Innovation and Heuristics. Postmodern Openings, 12(2), pp 78-108. Available at:

Cairns, D., Dickson, M., & McMinn, M. (2021). Feeling like a Scientist: Factors affecting students’ selections of technology tools in the science classroom. Journal of Science Education and Technology, 30(6), pp 766-776. Available at:

de Jong, T., Gillet, D., Rodríguez-Triana, M. J., Hovardas, T., Dikke, D., Doran, R., & Law, E. (2021). Understanding teacher design practices for digital inquiry–based science learning: The case of Go-Lab. Educational Technology Research and Development, 69(2), pp 417-444. Available at:

Develaki, M. (2019). Methodology and epistemology of computer simulations and implications for science education. Journal of Science Education and Technology, 28(4), pp 353-370. Available at:

Feitosa, R. A., & Dias, A. M. (2019). Articulation between teaching, research and extension: tutorial education program (PET) contributions for biology students. Educacao & formacao, 4(12), pp 169-190. Available at:

Gnesdilow, D., & Puntambekar, S. (2021). Comparing middle school students’ science explanations during physical and virtual laboratories. Journal of Science Education and Technology, pp 1-12. Available at:

Gnidovec, T., Žemlja, M., Dolenec, A., & Torkar, G. (2020). Using augmented reality and the structure behavior function model to teach lower secondary school students about the human circulatory system. Journal of Science Education Technology, 29(774), p. 784. Available at:

Grund, J., & Brock, A. (2020). Education for sustainable development in Germany: not just desired but also effective for transformative action. Sustainability, 12(7), 2838. Available at:

Hartadiyati, E., Wiyanto, Rusilowati, A., & Prasetyo, A. (2020). Pedagogical content knowledge (PCK) of prospective biology teacher on respiratory system material to education for sustainable development. Journal of Physics: Conference Series, 1521, 42034. Available at:

Heradio, R., de la Torre, L., & Dormido, S. (2016). Virtual and remote labs in control education: A survey. Annual Reviews in Control, 42, pp 1-10. Available at:

Iatsyshyn, A. V., Kovach, V. O., Romanenko, Y. O., & Iatsyshyn, A. V. (2019). Cloud services application ways for preparation of future PhD. Paper presented at the CEUR Workshop Proceedings, , 2433 197-216.

Lee, S. W. Y., Tsai, C. C. (2013). Technology-supported Learning in Secondary and Undergraduate Biological Education: Observations from Literature Review. Sci Educ Technol 22, pp 226-233. Available at:

Lin, C. J., Wu, T. T., Wang, T. H., Pedaste, M., Huang, Y. M. (2022). Exploring Student Discussion Topics in STEAM Hands-On Collaborative Activity. In: Huang, Y.M., Cheng, S.C., Barroso, J., Sandnes, F.E. (eds) Innovative Technologies and Learning. ICITL. Lecture Notes in Computer Science, vol 13449. Springer, Cham. Available at:

Markowitz, D. M., Laha, R., Perone, B. P., Pea, R. D., & Bailenson, J. N. (2018). Immersive virtual reality field trips facilitate learning about climate change. Frontiers in Psychology, 9, 2364. Available at:

Ministers of Ukraine. (2020). The concept of development of science, technology, engineering and mathematics education (STEM education). Zakon Rada. Available at:

Molderez, I., & Fonseca, E. (2018). The efficacy of real-world experiences and service learning for fostering competences for sustainable development in higher education. Journal of cleaner production, 172, pp 4397-4410. Available at:

Mystakidis, S., Berki, E., & Valtanen, J. P. (2021). Deep and meaningful e-learning with social virtual reality environments in higher education: A systematic literature review. Applied Sciences, 11(5), p. 2412. Available at:

O'Flaherty, J., & Liddy, M. (2018). The impact of development education and education for sustainable development interventions: a synthesis of the research. Environmental education research, 24(7), pp 1031-1049. Available at:

Osti, F., de Amicis, R., Sanchez, C. A., Tilt, A. B., Prather, E., & Liverani, A. (2021). A VR training system for learning and skills development for construction workers. Virtual Reality, 25(2), pp 523-538. Available at:

Palos-Sanchez, P. R., Folgado-Fernandez, J. A., & Rojas-Sanchez, M. (2022). Virtual reality technology: Analysis based on text and opinion mining. Mathematical Biosciences and Engineering, 19(8), pp 7856-7885. Available at:

Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), pp 785-797. Available at:

Paszkiewicz, A., Salach, M., Dymora, P., Bolanowski, M., Budzik, G., & Kubiak, P. (2021). Methodology of implementing virtual reality in education for industry 4.0. Sustainability, 13(9), 5049. Available at:

Rojas-Sánchez, M. A., Palos-Sánchez, P. R. & Folgado-Fernández, J. A. Systematic literature review and bibliometric analysis on virtual reality and education. Educ Inf Technol 28, pp 155-192 (2023). Available at:

Rudyshyn, S., Koreneva, I., Yakushko, K., Babenko-Zhyrnova, M., Lupak, N. (2022). Simulation of Educational and Professional Training of Students. Apuntes Universitarios, 12(2), pp 114-132. Available at:

Sari, D. P., Wulan, A. R., & Solihat, R. (2018). Developing 21st century student research skills through assessment matrix and edmodo in biology project. Journal of Physics: Conference Series, 1157(2), 022093. Available at:

Sebastian-Lopez, M., & de Miguel Gonzalez, R. (2020). Mobile learning for sustainable development and environmental teacher education. Sustainability, 12(22), 9757. Available at:

Sidorovich, M., Tsurul, O., Romaniuk, R., Solona, Y., Kundelchuk, O., Koreneva, I., Blazhko, O. (2022). Education for Sustainable Development in Training of Future Biology Teachers for Research Activity: An Applied Aspect. Revista Românească pentru Educaţie Multidimensională, 14(2), pp 19-49. Available at:

Sun, J. C. Y., Ye, S. L., Yu, S. J. et al. (2023). Effects of Wearable Hybrid AR/VR Learning Material on High School Students’ Situational Interest, Engagement, and Learning Performance: the Case of a Physics Laboratory Learning Environment. Sci Educ Technol 32, pp 1-12. Available at:

Ulus, B., & Oner, D. (2020). Fostering middle school students’ knowledge integration using the Web-based inquiry science environment (WISE). Journal of Science Education and Technology, 29(2), pp 242-256. Available at:

UNESCO Strategy on Technological Innovation in Education (2022-2025). Available at:

Wang, H.-Y., & Sun, J. C.-Y. (2021). Real-time virtual reality co-creation: Collective intelligence and consciousness for student engagement and focused attention within online communities. Interactive Learning Environments. Available at:

Zhai, X., & Shi, L. (2020). Understanding how the perceived usefulness of mobile technology impacts physics learning achievement: A pedagogical perspective. Journal of Science Education and Technology, 29(6), pp 743-757. Available at:

Zinovieva, I. S., Artemchuk, V. O., Iatsyshyn, A. V., Popov, O. O., Kovach, V. O., Iatsyshyn, A. V., . . . Radchenko, O. V. (2021). The use of online coding platforms as additional distance tools in programming education.Paper presented at the Journal of Physics: Conference Series, , 1840(1) doi:10.1088/1742-6596/1840/1/012029






The global development of innovative technologies and their impact on the educat